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H Y D R A U L I C  R E S I S T A N C E  AND H E A T  T R A N S F E R  IN A 

P U L S A T I N G  F L O W  OF A G A S - S O L I D  M I X T U R E  

V. V. M a m a e v ,  V. S. N o s o v ,  
a n d  N. I.  S y r o m y a t n i k o v  UDC 536.244:532.582.7 

It is shown that the heat - t ransfer  coefficient can be increased by 30-350/0 if periodic fluctuations in 
speed occur in an ascending gas - so l i d  mixture. 

Much importance has recently been attached [1] to pulsed pneumatic t ransport ,  in which there is a strictly 
periodic air  input into a pipeline. This provides similar speeds for  the carrying medium and bunches of ma-  
ter ia l ,  which provide for considerably improved range and performance. 

On the other hand, forced velocity pulsation superimposed on a uniform flow may accelerate heat t rans-  
fer  [2, 3], while colliding jets of suspensions and pulsations in ascending gas - so l id  flows at resonance may 
accelerate  heat t ransfer  between phases [4]. 

Here we repor t  measurements  on velocity pulsations and heat t ransfer  for  gas - so l id  suspensions in 
pipes. 

The equipment has previously been described [5]; the velocity fluctuations were produced by periodically 
altering the cross section of the pipe before or after the working section, which was a steel tube of internal 
diameter 8 mm and length 800 mm. The pulsation frequency was in the range 1-12 Hz and was recorded by a 
clock system (1 Hz) or by a stroboscopic tachometer  (5 or 12 Hz). The amplitude of the pulsations in the flow 
rate was estimated from the fluctuations in the stagnation pressure .  The Reynolds number varied in the range 
(2-8.2) " l0  s, while the corresponding gas speeds were 4.6-17.5 m/sec. The electrocorundum part icles of diam- 
e ter  60 ~ were used at concentrations from 0 to 11 kg/kg. The value did not exceed 6 kg/kg at low gas speeds. 

The t ime-averaged pressure  difference over the working section was measured with a micromanometer.  

The studies amounted to determining the empirical  factor K applicabl e to the resistance due to the par t i -  
cles in the flow. 

The definition of K is as follows [6]: 
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TABLE 1. Exper imental  Values of the Coefficients K and Kp Cal-  
culated f rom Eq. (1) 

Flow mode f, Hz Re mkg/kg K Kp 

Laminar 

Turbu lent 

0 

1;5 
12 

0 
1;5 
12 

1000--5000 

2000--3800 
2000--3600 

5000--8000 
4000--8200 
3600--8000 

0,8--15,0 

2;5--11,0 
3,0--10,0 

1 , 0 - - 1 5 , 0  

3,0--9,0 

3,0--9,0 

0,34. I0 ~. 
.Re-~ a 

- -  il, 18. lOg.i~e-2.5 
-- ]1,44.10S.Re -2"5 

0,2 ] 0,2 
- i 

! 0,25 

i 

A-Q~mix/APa- 1 
K = (~) 

which applies for pulsating and steady flows. The p r e s s u r e  difference APmi  x was measured  in the hydrody-  
namic-s tabi l iza t ion  section and co r rec ted  for  energy loss  due to par t ic le  lift, while AP a was calculated f rom 
standard relat ions for  clean air  in smooth tubes. Table 1 gives the resul ts .  The laminar  and turbulent modes 
have substantially different values for the cha rac t e r i s t i c s ,  which themselves  determine the t ranspor t  ra tes .  
This effect  is fa i r ly  c lear ,  although not seen d i rec t ly ,  and can serve  to define the mode of flow; in that way 
one can es t imate  the cr i t ical  value of Re,  e .g. ,  f rom the Re dependence of Eu and Nu. Curves of NU= f(Re) 
type for  the clean gas ,  and for  the s teady-s ta te  and pulsating suspension flows, allow one to determine the effects 
of the par t ic le  concentrat ion and pulsas f requency on the cr i t ical  Re [5]. Table 1 shows that the range in Re 
for laminar  or turbulent flows var ies  somewhat with f. 

There is an exponential fall in K down to the level of Re corresponding to onset of turbulence for f = 12 
Hz and for f = 0, but thereaf ter  there  is very  little velocity dependence. For  instance, f o r a  s teady-s ta te  flow 
{p-< 15 kg/kg) and for  a pulsating one (~-< 3; f = 12 Hz) the values of K fell in the f i r s t  case f rom 1.4 to 0.2 as 
the Reynolds number increased f rom 1000 to the cr i t ical  value of 5000, while in the second case the fall to K = 
0.2 occur red  already at Re ~ 3600, with little fur ther  change in K, i .e . ,  the forced oscil lat ions have little ef -  
fect  at high speeds,  and K can be taken f rom the usual formulas  [6] to a f i r s t  approximation. 

Also,  pulsations super imposed on a gas containing only a little mater ia l  0~ -< 2 kg/kg) resu l t  in the K = 
f(Re) curves  splitting up in accordance with the solid content; in that case ,  K is l a rge r  by a factor  of 2-3 
than at higher contents,  which is due to the more  marked effect of the pulsations on the p res su re  difference at 
low concentrations.  

Figure  1 shows the changes in the relat ive p res su re  difference over  the section in relat ion to part icle 
content for s teady-s ta te  and pulsating flows: in the f i r s t  case ,  APmix/Ap a increases  with th e concentrat ion and is 
dependent on the speed, being l a rges t  for  the laminar  state (curves IV). In the turbulent state (curves V and 
VI), the relat ive drop is l a rge r  than that in the t ransi t ion region (curve VII). A pulsating flow at low speeds 
(Re = 2000, curve I) gives the loss in p r e s s u r e  as dependent only on the concentrat ion,  whereas  the t r an s i -  
tional and turbulent modes show an effect f rom the pulsation f requency,  since the loss increases  wi.th the lat ter .  
Curve II cor responds  to 12 Hz and curve III, to 1 and 5 Hz. 

In the t ransi t ion region,  ~Pp.  mix /APa  is independent of the frequency and takes the values for  s teady-s ta te  
flows; the pulsations cause the relat ive p re s su re  drop to be higher for Re = 2000 even for f = 12 Hz. At low 
f requencies ,  the p re s su re  difference is the same as that for  the s teady-s ta te  ease within the e r r o r  of m e a s u r e -  
ment. A relat ionship has been repor ted  [5] between the cr i t ical  Reynolds number and the solid content, and it 
has been found that the stability of a laminar  s teady-s ta te  flow is per turbed for  Re around l0  s and # -~: 4 kg /kg ;  
any fur ther  increase  in the concentrat ion causes  the cr i t ical  Re to be above that for pure air. If pulsations 
are  imposed on a mixture p > 4, Recr  shifts to higher values ,  i .e. ,  the pulsations have the same effect as a 
concentrat ion increase .  Fo r  instance,  a pulsating flow with # = 5 kg/kg  a n d  f = 5 Hz gave Recr  ~ 3800, while 
for f = 0 this value of Recr  was attained at ~ = 16 kg/kg. 

There fore ,  these pulsations suppress  the turbulent smal l - sca le  velocity fluctuations,  as do increased 
par t ic le  concentrat ions,  with the resul t  that the laminar  flow pe r s i s t s  to higher speeds [8 ]. On the other  hand, turbu-  
lence sets  in ea r l i e r  at any concentrat ion under our conditions at low frequencies ,  e.g., at  Re = 5 000 (the equivalent 
fo r  clean gas is taken as 104). There  is a t ransi t ion range Re = 3 800-5 000, which becomes  n a r r o w e r  at high frequencies,  
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Fig. 1. Dependence of p r e s s u r e  d i f fe rence  in pulsat ing 
flow of mix tu re  on p a r t i c l e  concentrat ion;  f = 12 
Hz: 1) Re = 2000; 2) 3400; 3) 5000; 4) 8000; f = 5 Hz~,5) 
Re = 2000; 6) 3400; 7) 5000; 8) 8000; f = 1 Hz~ 9) Re = 
2000; 10) 3400; 11)5000; 12) 8000. [V) Re = 8000; VI) 
5000; VII) 3400]. 
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Fig. 2. Dependence of r e l a t ive  h e a t - t r a n s f e r  coefficient  on flow speed 
for  f = 5 Hz: 1) ~ = 3 kg/kg; 2) 5; 3) 8-10. 

Fig. 3. Genera l i zed  dependence on heat  t r ans fe r .  Pulsa t ing flow: 
l am i na r  mode - 1) f = 12 Hz; 2) t and 5 Hz; turbulent  and t rans i t iona l  
modes  - 3) f = 12 Hz; 4) 5; 5) 1. S teady-s t a t e f low [5]: 6) l a m i n a r  mode; 
7) t rans i t iona l ;  8) turbulent .  

andvehich at f=  12 Hz vanishes  a l together .  A qual i ta t ively  s im i l a r  r e su l t  (no t rans i t iona l  mode) was r epor t ed  
in [8], where  the l a m i n a r  mode was  r ep laced  suddenly by the turbulent  one at Re = 5000 for/~ = 25 kg/kg. 

The ef fec ts  of the fo rced  osci l la t ions  on the hea t  t r a n s f e r  as  a function of speed a r e  shown in Fig. 2 for  
f = 5 Hz; the h e a t - t r a n s f e r  r a t e  tends to fal l  as  the veloci ty  i n c r e a s e s  up to  about Re ~ 3800, and then it r i s e s ,  
and the e f fec t s  of the pulsa t ions  a re  the l e s s ,  the l a r g e r  the par t i c le  concentrat ion.  Relat ive h e a t - t r a n s f e r  
coeff ic ients  i nc rea se  f r o m  1.2 to 1.35 on r a i s ing  the f requency f r o m  i to 12 Hz in the l a m i n a r  mode with/~ = 5 
kg/kg, which occu r s  because  the pulsat ions  in the gas  phase  play a l a r g e r  pa r t ,  and hea t  t r a n s f e r  for  clean a i r  
i s  m a x i m a l  for  f = 12 Hz. C o n v e r s e l y ,  developed turbulence  causes  ~ p . m i x / ~ m i x t o f a l l f r o m 1 . 3 5  t o l . 0 ,  which 
is  c l ea r ly  due to the dominant  ro le  of tu rbulen t -pu lsa t ion  t r anspor t .  
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TABLE 2. Values of Constants in Eq. (2) 

Flow mode 

Laminar 

Turbulent 

I Pulsation 

!f, Hz 

1 

5 
12 

1 
5 

12 

Re 

2000--3800 

2000--3800 
2000--3600 

4000--8200 
4000--8200 
3600--80q0 

~, kg/kg 

2.5--10,0 
2,5--11,0 
0,8--10,0 

1 , 0 - - 9 , 0  

1 , 2 - - 9 , 0  
0,7--9,0 

2.16.104 
2,3.10t 
19,5.104 

4,26 
5,71 
25,3 

--1,22 
--1,22 
--I ,50 

--0,20 
--O, 23 
--0,40 

0,363 
O, 292 
0,350 

0,401 
0,376 
0,305 

Contents above 8 kg/kg cause the hea t - t r ans fe r  ra te  to fall ,  and the relat ive hea t - t r ans fe r  coefficients 
are  less  than 1 at the maximum frequency used in our experiments .  The same resul ts  have been obtained for  
clean air  at f = 20 Hz [7]. Table 2 shows that the re levant  hea t - t r ans fe r  coefficients are  mos t  markedly de-  
pendent on the speed in the laminar  mode,  which resul t s  in a more  marked fall than that occur r ing  in the steady 
state,  where O~.mix/aa ~ Re -~ The effects of Re on the heat  t r ans fe r  in a pulsating flow are  s imi lar  for  
ho r i zon ta l t r anspor t  with f= 0, where amix/C~a ~ Re -1"2~ [5]. The effects of the concentra t ionon C~p.mix/aa va ry  with 
the frequency and speed only to small  extents,  namely,  f rom 0.3 to 0.4, as Fig. 3 shows, which presents  the 
general ized experimental  data. For  compar ison we give the approximating straight  lines derived for a s teady-  
state ascending flow [5]. Figure  3 shows c lear ly  the effects on the hea t - t r ans f e r  rate in various modes of 
flow with super imposed per iodic  pulsation; in the turbulent mode (Re > 5000) the effects of speed and concen-  
t rat ion are  only slight,  whereas  in the laminar  case the velocity has a much more  marked effect on the heat 
t ransfer .  

Leas t - squa re s  fitting gave the following working formula with an e r r o r  of less  than 670: 

. ap.mix _ c Re"bt 'n. (2) 
0~ a 

The values of c, n, and m are given in Table 2; the hea t - t r ans fe r  coefficient ~a was derived f rom the formulas  
of [7]. 

These resu l t s  on the hydrodynamics  and heat t ransfer  in pulsating motion i'n ver t ica l  tubes show that such 
pulsations for  ~ > 4 tend to suppress  the laminar  made and to reduce Re corresponding to onset  of developed 
turbulence for  all t~, which provides some explanation of observat ions on the pulsat ion p r o c e s s e s  in d ispersed  
flows. The effects of the speed on the heat t r ans fe r  are  substantially dependent on the mode of flow. 

APmix 
/xP a 
APp.mix 
G t 
Ga 

t~ = Gt/G a 
Re 

Recr  
f 

~V 
(~a 

ap.mix 
K 
Kp 

NOTATION 

is the pressure drop with mixture in tube, N/m2; 

is the pressure drop for pure air; 
is the pressure drop for pulsating flow of mixture; 
is the mass flow rate of particles, kg/h; 
is the mass flow rate of air; 
is the rat io of mass  flow ra tes ;  
is the Reynolds number;  
~s ~he cr i t ical  Reynolds number;  
is the frequency of velocity pulsat ions,  Hz; 
is the hea t - t r ans fe r  coefficient in s teady-s ta te  flow, W/m z. ~ 
is the hea t - t r ans fe r  coefficient for pure air ;  
~s the hea t - t r ans fe r  coefficient for pulsating flow of mixture;  
is the coefficient fo r  res i s tance  caused by par t ic les .  
is the coefficient fo r  pulsa t ion-f requency effect  and res i s tance  due to the par t ic les  [Kp = {APp.mL~ 1 
APa-,)/t*]. 
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H O T - W I R E  M E T H O D  IN A N O N S T A T I O N A R Y  V A R I A T I O N  

R .  A.  M u s t a f a e v  UDC 536.23:536.453 

Star t ing f r o m  the solution of the the rmal -conduc t iv i ty  equation,  a nonsta t ionary  va r ia t ion  of the 
"ho t -wi re"  method is developed in the case  of monotonic heat ing of a c a l o r i m e t r i c  s y s t e m  which 
p e r m i t s  de te rmina t ion  of the t e m p e r a t u r e  dependence of the t h e r m a l  conductivity of liquids in a 
b road  t e m p e r a t u r e  range  f r o m  one test .  

The s ta t ionary  "ho t -wi re"  method is ex tens ive ly  used at this t ime  to invest igate  the coefficient  of t h e rma l  
conductivity of gases  and l iquids [1]. This  method,  as all  s ta t ionary  methods (plane l a y e r ,  coaxial  cyl inders) ,  
is  d is t inct ive  in the long durat ion of the t e s t ,  r e q u i r e s  a complex  appa ra tu s ,  and does not p e r m i t  de te rmina t ion  
of the t e m p e r a t u r e  dependence of the coeff icient  of t h e r m a l  conductivity f r o m  one test .  Using this method,  the 
e x p e r i m e n t e r  should expect  the buildup of a s ta t ionary  s tate  in a c a l o r i m e t r i c  sy s t em eve ry  t ime  when m e a -  
sur ing the coeff icient  of t h e r m a l  conductivity.  Consequently,  the de te rmina t ion  of the coefficient  of t h e r m a l  
conductivity of one liquid in a b road  t e m p e r a t u r e  range  takes  s eve ra l  days  at  a min imum.  Hence, s eve ra l ,  p r i n -  
cipal ly fo re ign ,  pape r s  devoted to a nons ta t ionary  va r i a t ion  of the "ho t -wi re"  method have recent ly  appeared  
[2-15]. The theory  of the method in applicat ion to r a r e f i e d  gases  is e lucidated in espec ia l  detail  in [16]. The 
"hot -wi re"  method d i f fe rs  f r o m  all  o ther  nons ta t ionary  methods in that  the coeff icient  of t he rma l  conductivity 
is de te rmined  d i rec t ly  by this  method,  and not the coeff icient  of t h e r m a l  dfffusivity. However ,  it is not ve ry  
exac t  because  of the difficulty of r eco rd ing  exact ly  the rapidly  va ry ing  w i r e  t e m p e r a t u r e  during the m e a s u r e -  
ment .  In this r e s p e c t ,  the method ment ioned in the re la t ive  var ia t ion  in which the r eco rd ing  device acts  as a 
ze ro  indicator  [17] is of definite in te res t .  

An a t tempt  is made  be lowto  extend the Nhot-wire" method t o t h e  ca se  of a monotonic change in the t e m -  
p e r a t u r e  of a c a l o r i m e t r i c  sys t em.  

The design scheme  of the method under  cons idera t ion  r educes  to the following. A fine meta l  wi re  of 
rad ius  R i (Fig. 1) is s t r e t ched  coaxial ly in a bulky meta l  tube 1 of rad ius  Rothrough  a sea led  e l ec t r i ca l  insula t -  
ing plug 2. The liquid being inves t igated f i l ls  the gap between the wi re  3 and the tube 1. A cons tan t -power  
e l ec t r i ca l  cu r r en t  p a s s e s  through the wi re  during the en t i re  test .  In the s ta t ionary  va r ia t ion  of the method,  the 
whole s y s t e m  (module) is s t r i c t ly  t he rmos ta t ed .  

Let  us a s s u m e  that  the whole s y s t e m  is  sur rounded by a hea t - insu la t ing  shell  which r i s e s  smoothly in 
t e m p e r a t u r e  under  the e f fec t  of the ex te rna l  hea t e r  4 in such a way that  the t e m p e r a t u r e  of the shell  approx i -  
ma te ly  equals  the t e m p e r a t u r e  of the module.  In this  case  the hea t  flux of the inner hea te r  3 is expended c o m -  
pletely in a slow r i s e  in the t e m p e r a t u r e  of the module and the liquid. The power  W(T) of the L e n z - J o u l e  hea t  
developed by the w i r e ,  the t e m p e r a t u r e  drop  ~(T) in the l aye r  under invest igat ion,  and the r a t e  of t e m p e r a t u r e  
r i s e  b(T) of the s y s t e m  a re  m e a s u r e d  in the tes t .  
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